

Module T	itle:	UAS Technolog	y and Applic	ations	Level	el: 7		Cre Val		20)
Module code:		ENG759	Is this a new YES module?			Code of module being replaced:					
Cost Centre: GAME		JACS3 code:			H400						
Trimester(s) in which to be offered:			1, 2	With effect from:			embe	er 17			
School: Applied Science, Computing & Module Leader: R.Bolam											
Scheduled learning and teaching hours 40 hrs											
Guided independent study				160 hrs							
Placement				0 hrs							
Module duration (total hours)				200 hrs							
Programme(s) in which to be offered Core Option							Option				
MSc Unmanned Aircraft System Technology						✓					
Pre-requisites None											
	al Febr	uary 17 nodification N/A ns received Academio	c Board approv	ral?	Versior Yes ✓						

Module Aims

To support the development of the student in the following areas:

- To apply advanced modelling and analysis to the solution of drone technology related problems.
- To be able to specify, select and assemble flight and payload components and subsystems suitable to an advanced UAV application.
- Demonstrate a proficiency in the skills required to safely operate a UAS.

Keν	/ skills	for	emn	l۸	ability
1/6/	/ SKIIIS	101	CILID	10°	ability

KS1	Written, oral and media communication skills
KS2	Leadership, team working and networking skills
KS3	Opportunity, creativity and problem solving skills
KS4	Information technology skills and digital literacy
KS5	Information management skills
KS6	Research skills
KS7	Intercultural and sustainability skills
KS8	Career management skills
KS9	Learning to learn (managing personal and professional development, self-
	management)
KS10	Numeracy

At	the end of this module, students will be able to	Key Skills		
1	Demonstrate a comprehensive understanding of the	KS1	KS3	
	technology and terminology relating to the component	KS4	KS10	
	elements of an unmanned aircraft system.	KS6		
2	Critically analyse the airworthiness of a UAS, considering the	KS1	KS3	
	role, limitations and purpose of the components that comprise	KS4	KS10	
	a UAS.	KS5		
3	Analyse the flight stability, control, power and associated operational parameters required to conduct an advanced UAS mission.	KS3	KS3	
		KS4	KS10	
	UAS MISSION.	KS10		
	Demonstrate a systematic understanding of the knowledge	KS1	KS2	
4	and a critical awareness of the current problems associated with the successful and safe conduct of a drone mission.	KS3	KS7	

Derogations

A derogation from regulations has been approved for this programme:

Students are required to achieve a minimum overall module mark of 50%, with each element of assessment (where there is more than one assessment) requiring a minimum mark of 40%.

Assessment:

Assessment 1: The coursework shall comprise a series of tasks relating to the technology associated with component elements of UAS and a series of flight tests during which the student will demonstrate correct pre and post flight preparation (including mission planning documentation) and practical drone piloting skills with and without GNSS assisted flight modes.

Assessment 2: Report shall be based on computerised simulation and analysis of UAS flight stability and control or a critical investigation into UAS design for airworthiness using approved safety analyses techniques.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1,4	Coursework	50		2500
2	2,3	Report	50		2500

Learning and Teaching Strategies:

The module will be taught with lectures, laboratory and workshop sessions, actual and simulated flight exercises including, team exercises, mock missions and mission planning using way-point flying techniques. Also the use of computer modelling software such as MATLAB, SIMULINK and ANSYS.

Syllabus outline:

UAV System Technology

The anatomy of a drone. Types of drones: fixed wing and multi-rotor designs. Aerodynamics. Power storage and Propulsion systems. Control technology: Transmitters and Receivers, Flight Controllers, auto-pilots. Operational and performance envelopes. GPS, Inertial Navigation Systems. Gyro stabilisation and gain selection. UAS flight stability and control theory.

UAS Design for Airworthiness

The meaning and importance of airworthiness, reliability and maintenance procedures to a UAS design. An overview of airworthiness legislation for manned flight and its relevance to UAS. Reliability analyses: Functional Hazard Assessments, Failure Mode Effect Analyses, Fault Tree and Markov Analyses, UAS Inspection, Safety Studies and the design for

redundancy and dormant failure modes. UAS maintenance procedures and Failsafe provisions.

Payload Technology

Payload centre of gravity, freight conveyancing techniques, camera technology, video storage, Real-time video transmission systems. Photographic equipment capabilities and limitations.

Drone Operations

Mission planning and Risk Assessment for safe drone operation. UK Airspace operating principles. Airmanship and aviation safety. Navigation and charts. Waypoint flying and associated software systems. Practical flying exercises both simulated and real.

Bibliography:

Essential reading

Elliott, A. (2016) Build Your Own Drone Manual. The Practical Guide to Safely Building, Operating and maintaining an Unmanned Aerial Vehicle (UAV). Haynes.

Other indicative reading

Garner,W.B (2009) *Model Airplane Propellers*. DCRC Club Newsletter, Vol 55, Issue 4/5. Juniper, A. (2015) *The Complete Guide to Drones*. Octopus Publishing Group Austin, R. (2010) *Unmanned Aircraft Systems: UAVs Design, Development and Deployment*. Wiley-Blackwell.

Marshall, D.M., Barnhart, R.K., Shappee, E., Most, M.T. (2016) *Introduction to Unmanned Aircraft Systems, Second Edition*. CRC Press.